Single-chain dynamics in a homogeneous melt and a lamellar microphase: a comparison between Smart Monte Carlo dynamics, slithering-snake dynamics, and slip-link dynamics.
نویسندگان
چکیده
We investigate the ability of Monte-Carlo algorithms to describe the single-chain dynamics in a dense homogeneous melt and a lamellar phase of a symmetric diblock copolymer. A minimal, coarse-grained model is employed that describes connectivity of effective segments by harmonic springs and where segments interact via soft potentials, which do not enforce noncrossability of the chain molecules. Studying the mean-square displacements, the dynamic structure factor, and the stress relaxation, we show that local, unconstraint displacements of segments via a Smart Monte Carlo algorithm give rise to Rouse dynamics for all but the first Monte Carlo steps. Using the slithering-snake algorithm, we observe a dynamics that is compatible with the predictions of the tube model of entangled melts for long times, but the dynamics inside the tube cannot be resolved. Using a slip-link model, we can describe the effect of entanglements and follow the different regimes of the single-chain dynamics over seven decades in time. Applications of this simulation scheme to spatially inhomogeneous systems are illustrated by studying the lamellar phase of a symmetric diblock copolymer. For the local, unconstraint dynamics, the single-chain motions parallel and perpendicular to the interfaces decouples; the perpendicular dynamics is slowed down but the parallel dynamics is identical to that in a homogeneous melt. Both the slithering-snake dynamics and the slip-link dynamics give rise to a coupling of parallel and perpendicular directions and a significant slowing down of the dynamics in the lamellar phase.
منابع مشابه
Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملDynamical properties of the slithering-snake algorithm: a numerical test of the activated-reptation hypothesis.
Correlations in the motion of reptating polymers in a melt are investigated by means of Monte Carlo simulations of the three-dimensional slithering-snake version of the bond-fluctuation model. Surprisingly, the slithering-snake dynamics becomes inconsistent with classical reptation predictions at high chain overlap (created either by chain length N or by the volume fraction phi of occupied latt...
متن کاملEnergy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کاملMarket Based Analysis of Natural Gas and Electricity Export via System Dynamics
By increasing the extraction of natural gas, its role in the restructured power systems is being expanded, due to its lower pollution. Iran has the second largest reserves of natural gas in the world and exports it to different countries. This paper represents long run analysis of natural gas export from Iran to Turkey as a case study, considering direct transfer and exporting via the power mar...
متن کاملInvestigation of Monte Carlo, Molecular Dynamic and Langevin dynamic simulation methods for Albumin- Methanol system and Albumin-Water system
Serum Albumin is the most aboundant protein in blood plasma. Its two major roles aremaintaining osmotic pressure and depositing and transporting compounds. In this paper,Albumin-methanol solution simulation is carried out by three techniques including MonteCarlo (MC), Molecular Dynamic (MD) and Langevin Dynamic (LD) simulations. Byinvestigating energy changes by time and temperature (between 27...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 129 16 شماره
صفحات -
تاریخ انتشار 2008